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Abstract

The process of image formation in magnetic resonance imaging (MRI) can be simulated by means of an iterative solution of Bloch–
Torrey equations. This is a useful accessory to analyze the influence of sample properties, sequence parameters and hardware specifica-
tions on the MRI signal. In this paper, a computer algorithm is presented which is based on calculating partial derivatives of the mag-
netization vector. This technique allows more efficient simulation than summation of isochromats (the latter being commonly employed
for this purpose) and, as a result, the effect of diffusion on the MRI signal can be calculated iteratively. A detailed description of the
algorithm is given, and its feasibility for different applications is studied. It is shown that the algorithm is most applicable to simulating
the effect of field perturbations, i.e. intra-voxel dephasing, but is also useful for other typical imaging experiments and the simulation of
diffusion weighting.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

As a supplement to magnetic resonance imaging (MRI)
experiments, numerical simulation of MRI sequences
based on solutions of Bloch–Torrey equations [1] provides
additional insight into the process of image formation.
There are numerous examples where simulation can be
useful:

• Optimization of MR sequences without the need of cost-
ly measurements.

• Analyzing the effect of field perturbations [2].
• Investigating the effects of in-plane flow [3].
• Estimating inversion efficiency of in vivo arterial spin-la-

beling [4].
• Rapid prototyping of MRI sequences [5].
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The first description of a simulator for MRI imaging
was given by Bittoun et al. [1]. It uses the solutions of Bloch
equations for one point and one frequency of the object
(i.e., for one isochromat) and generates the global MRI sig-
nal by accumulating the signal from many isochromats of
the object. Thereby, the isochromats differ by frequency
offset due to different spatial offsets in the field gradients
of the imaging sequence. This isochromat summation
(ISUM) was adapted in a number of subsequent studies
[2,3,6–11]. In general, the accuracy of the simulation
increases with the number of isochromats and hence with
simulation time (ST), which is the time required to com-
plete the simulation. In particular, when using a too limited
number of isochromats, the following problems arise:

• Simulation is performed only at discrete spatial loca-
tions. In order to mimic a continuous distribution of
spins throughout the voxel, a considerable number of
isochromats is required per imaging voxel to generate
a smooth image intensity. If the number of isochromats
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is too low, spurious patterns appear in the simulated
image. It was estimated that at least three isochromats
per voxel and direction are necessary in order to reduce
the error of image intensity to less than 1.5% [7].

• Even with a large number of evenly distributed isochro-
mats per voxel, gradient spoiling can produce artificial
maxima if the spoiling strength is chosen so that, acci-
dentally, all isochromats differ only by a phase of 2p,
i.e. they interfere constructively [3]. Distributing the iso-
chromats randomly over the voxel might circumvent the
generation of false maxima, but may introduce artificial
fluctuations of image magnitude.

• In complex objects, such as biological tissue, a voxel
contains a mixture of isochromats with different reso-
nance frequencies. These may be, for example, due to
local field gradients in inhomogeneous media or differ-
ent chemical shifts. This distribution of frequencies leads
to intra-voxel dephasing and rephasing after the applica-
tion of radio-frequency (RF) pulses, i.e., to field-inho-
mogeneity-induced signal decay, spin echoes or
stimulated echoes. In order to simulate these effects
accurately, a large number of isochromats with different
resonance frequencies is usually required per voxel [9].

To obtain N imaging voxels per spatial dimension using
a number of input voxels with a fixed ratio relative to N,
the number of computational steps is of the order of N2.
In two-dimensional imaging, this results in a fourth-order
process (ST � N4). By considering a distribution of iso-
chromats in each voxel, the number of required steps is
increased further. Thus, even with contemporary hardware
or parallelized implementations [8], the simulation of com-
plex sequences or objects may be impractical by ISUM. A
technique to accelerate simulation is the use of tissue tem-
plates [9]. Unfortunately, this technique does not cover the
simulation of field distortions. Another limitation of pres-
ent-day simulation strategies is that they do not include
the effect of molecular self-diffusion on the MRI signal in
a general way.

The present work suggests an alternative approach to
increase simulation efficiency and to simulate self-diffusion:
in addition to tracing the evolution of magnetization at a
certain position and frequency (r,x), the evolution in the
immediate vicinity of this point is also traced. This is done
by calculating iteratively the intra-voxel magnetization gra-
dients, i.e., the partial derivatives (PDs) of the magnetization
vector, with respect to position and frequency. That is, a lin-
earization is performed for a small region centered about the
isochromat, i.e., the voxel, and the evolution of magnetiza-
tion over a continuum of spatial positions and frequencies
is traced simultaneously. This parameterization allows
extrapolation of the magnetization vector to different loca-
tions and frequencies. This magnetization-gradient based
simulation of intra-voxel dephasing (MAGSI) has two
applications: First, it is possible to calculate the total MRI
signal by phase-sensitive integrations over voxels and fre-
quency intervals. Thus, the number of computational steps
and hence ST, which is necessary for an accurate simulation,
can be reduced significantly in comparison to ISUM. Sec-
ond, the attenuation due to self-diffusion can be simulated
iteratively.

2. Methods

2.1. Input to simulation

The simulation was implemented within the ODIN
framework [5] using the C++ programming language.
ODIN describes an MRI sequence in terms of sequence
objects (RF pulses, gradient pulses, acquisition periods).
Thereby, each sequence object occupies a number of
channels (RF transmitter, gradients, and signal receiver)
and defines a set of discrete time intervals. For example,
an acquisition object will contribute a number of sam-
pling points separated by the dwell time, and a shaped
RF pulse will provide an array representing the complex
waveform of the RF field. The set union of all time
points enclosing the time intervals and proper interpola-
tion of values on all channels then forms the piecewise-
constant time course of the whole sequence. Each inter-
val of this piecewise-constant array is then used for one
iteration during simulation. This strategy ensures that
time resolution is high when necessary (e.g., during
shaped RF pulses, data acquisition) and low if unneces-
sary (e.g., timing/relaxation delays which can be covered
by one long iteration).

In addition, a virtual sample is required which serves as
input to the simulation by describing the properties of the
object, namely relaxation constants T1 and T2, diffusion
coefficient/tensor D, frequency offset x and equilibrium
magnetization M0. Each property is a function of spatial
position and frequency and can either be obtained by mea-
surement or by numerical models. In the following, the
term isochromat will be used to label a single point of this
discretized data set. Alternatively, to emphasize the (finite)
spatial extent of this data point, the term input voxel will
also be employed. In contrast, imaging voxel denotes a sin-
gle point of the reconstructed image. In addition, to pro-
vide a consistent treatment of the dependency of the
magnetization vector upon spatial position and frequency,
we will use the term voxel to describe not only a three-di-
mensional range of spatial positions (i.e., a volume ele-
ment), but also a certain range of frequencies.

2.2. Bloch–Torrey equations

The starting point for our considerations is the evolu-
tion of an isochromat, i.e., of a magnetization vector,
which is described by the Bloch–Torrey equations [12]
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with the magnetization vector M = M (r,
t) = (Mx,My,Mz)

> in rotating reference frame, indexed in
the following by (x, y, z). Here, $ ¼ ð o

or1
; o

or2
; o

or3
Þ> is applied

in the laboratory reference frame spanned by (r1, r2, r3), and
D is the diffusion tensor (D ¼ D in the case of isotropic dif-
fusion with a constant D). Fields in addition to the main
magnetic field are combined by

X ¼ Xðr; tÞ ¼ ðXx;Xy ;XzÞ>

¼ cBre
1 ðr; tÞ; cBim

1 ðr; tÞ; cGðtÞrþ xðrÞ
� �>

. ð2Þ

Thereby, c denotes the gyromagnetic ratio,
B1 ¼ Bre

1 þ iBim
1 is the complex RF field, G the externally

applied gradient-field vector, and x accounts for the fre-
quency offset of the isochromat observed.

2.3. Iterative solution of Bloch–Torrey equations for ISUM

A solution of Eq. (1) with piecewise constant fields (and
omitting diffusion) is given in [13]. Based on this solution,
the evolution of an isochromat can be calculated iteratively
(as for example in [4]). We will extend this approach by an
additional iterative step which takes into account unrestrict-
ed self diffusion. The iterative solution is simplified by two
assumptions: First, if Dt� T1,T2 during periods with RF
irradiation, where Dt is the duration of one iteration, irradi-
ation and relaxation can be considered as two subsequent
processes. Second, the so-called hard-pulse approximation

is used, where shaped RF pulses are considered as sequences
of hard pulses, i.e., pulses which rotate all isochromats the
same amount, interleaved with periods of free precession
[14]. With these simplifications, it is possible to express the
iterative solution, i.e., the magnetization vector at the i + 1
time step, by successive application of matrix operations:

M iþ1 ¼ EADRRFRzM i þ E0 ð3Þ
with an initial condition M0 = (0, 0,M0)>. Relaxation is
accounted for by

E ¼ diagðe�Dt=T 2 ; e�Dt=T 2 ; e�Dt=T 1Þ and

E0 ¼ ð0; 0;M0ð1� e�Dt=T 1ÞÞ>.
ð4Þ

Due to unrestricted self-diffusion, the magnetization
vector is attenuated at each iteration by

AD ¼ diagðe�b2D; e�b2D; e�b1DÞ ð5Þ

with the (isotropic) diffusion coefficient D. In Appendix A,
formulae will be presented to calculate the factors b1 and b2

using magnetization gradients. The rotation matrix due to
the application of RF pulses is

RRF ¼
a2

x þ a2
y cos hRF axayð1� cos hRFÞ �ay sin hRF

axayð1� cos hRFÞ a2
y þ a2

x cos hRF ax sin hRF
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with X1 ¼ cjB1j; ax ¼
Xx

X1

; ay ¼
Xy

X1

; and

hRF ¼ X1Dt.
ð7Þ
Finally, off-resonance effects due to local field inhomo-
geneity, chemical shift, or externally applied gradient fields
are taken into account by the rotation matrix

Rz ¼
cos hz sin hz 0

� sin hz cos hz 0

0 0 1

0
B@

1
CA with hz ¼ XzDt.

ð8Þ
2.4. Evolution of intra-voxel magnetization gradients for

MAGSI

For the following, it is suggestive to think of M being a
function of spatial position and frequency offset: M = M (r,
x) = M (r1, r2, r3, x). In order to trace the evolution of
intra-voxel magnetization gradients for MAGSI, partial
derivatives of M with respect to r and x of the iterative
solution (Eq. (3)) will be calculated. To simplify notation
in the following, k subscripts the three spatial dimensions
and the frequency dimension: k = {r1, r2, r3,x}, and the
symbol ok denotes the partial derivative in k’th direction
at the center of the voxel, i.e., ok . . . ¼ o

ok . . . jk¼0. By assum-
ing that B1,M0,T2,T1 and D do not vary throughout the
voxel (i.e., okB1 = okM0 = okT2 = okT1 = okD = 0), it fol-
lows that okRRF = okE = okE0 = okAD = 0. By applying
partial derivation to Eq. (3) and using the product rule of
derivation (which also applies to matrix multiplication),
one obtains

okM iþ1 ¼ EADRRFok½RzM i�
¼ EADRRF½ðokRzÞM i þRzokM i� ð9Þ

with

okRz ¼ hk

� sin hz cos hz 0

� cos hz � sin hz 0
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hk ¼ DtokXz ¼
DtðcGk þ okxÞ if k ¼ r1; r2; r3

Dt if k ¼ x

�
ð11Þ

and the initial condition okM0 = 0. The slope okx of fre-
quency offset is calculated by considering the frequency off-
set of the voxel and its neighbors in the kth direction.

With Eq. (9) it is possible to calculate PDs of M itera-
tively. We can think of them as gradients of the compo-
nents of M with respect to the parameters r and x. The
two terms in brackets on the right-hand side of Eq. (9)
can be interpreted as follows: the first increases or decreas-
es intra-voxel gradients in the transverse plane. In the case
of spatial coordinates (i.e., k = r1, r2, r3), this is due to the
presence of external (Gk) or internal (okx) field gradients.
For k = x, the component oxM (left-hand side of Eq.
(9)) is altered if transverse magnetization is present, i.e.,
it accounts for dephasing and rephasing as a function of
time. The second term rotates the magnetization gradients
already present according to the offset frequency at each
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step. As with the magnetization vector M, the magnetiza-
tion gradients okM are subject to the same rotation due
to RF pulses (RRF) and attenuated by diffusion (AD) and
relaxation (E).

A geometrical interpretation of magnetization gradients
is given in Fig. 1: for each voxel, okM indicates the direc-
tion and magnitude of change of M(r, x) when changing
the position along the kth direction, starting from the cen-
ter of the voxel. Thereby, a useful and reasonable con-
straint is that the magnetization vector has a the same
magnitude everywhere within the voxel, i.e., it is limited
to a sphere of radius |M(0)|. Thus, we are only interested
in the component of okM perpendicular to M (0), which
is given by ðokMÞperp ¼ okM � ðM

jMj � okMÞ M
jM j. It is then pos-

sible to extrapolate M for a certain position within the vox-
el by starting at M (0) (i.e., at the center of the voxel) and
traversing on a great circle along the sphere in the direction
given by (okM)perp by an arc length of s (r,
x) = |

P
kk Æ (okM)perp| (cf. Fig. 1). The tilt angle between

M (r,x) and M (0) is

aðr;xÞ ¼ sðr;xÞ
jMð0Þj ¼

j
P

k
k � ðokMÞperpj

jMð0Þj . ð12Þ
2.5. Calculation of MRI signal

In order to account for the effect of intra-voxel magne-
tization gradients on the acquired MRI signal, the complex
signal from a single voxel is calculated by phase-sensitive
integration over the voxel. Thereby, the transverse phase
in the center of a voxel is given by

/0 ¼ atan2ðMy ;MxÞ. ð13Þ
The atan2 function calculates the arc tangent of Mx and

My with the signs of both arguments used to determine the
quadrant of the result (this function is part of the C/C++-
programming language). The transverse magnitude is
defined by

jM?j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
. ð14Þ

Linear extrapolation of the phase throughout the voxel
yields

/ðr;xÞ ¼ /0 þ r$/þ xox/ ð15Þ
k M

(    M)perpk

α

s
M(0)

ωM(r,   )

Fig. 1. Geometrical interpretation of magnetization gradients. All mag-
netization vectors within the voxel lie on a sphere with radius |M (0)|. The
vector M (r,x) can be extrapolated by traversing along the sphere in the
direction specified by (okM)perp and length s. Refer to the text for
explanation of symbols.
with PDs of the transverse phase, i.e., of Eq. (13), given by

ok/ ¼
0 if jM?j ¼ 0;
Mxok My�Myok Mx

jM?j2
else.

(
ð16Þ

In the following, it is assumed that ok|M^| = 0, i.e. the
transverse magnitude does not vary throughout the voxel
or with frequency offset. This simplification is reasonable
because the primary effect of external fields is to generate
a variable phase throughout the voxel.

Integrating over the nth voxel with spatial dimensions
Lr1
; Lr2

and Lr3
covering a frequency range Lx yields the

signal
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jM?jei/ðr;xÞdxdr1 dr2 dr3. ð17Þ

By applying Fourier integration in each dimension, one
obtains

Sn ¼ sincr1
sincr2

sincr3
sincxjM?jei/0 ð18Þ

with

sinck ¼
sin Lk

2
ok/

� �
Lk
2
ok/

. ð19Þ

The overall signal S for each acquisition interval, i.e. the
signal received in the RF coil, is then generated by sum-
ming over all voxels: S =

P
nSn.

2.6. Summary of simulation algorithm

To summarize, the following steps are performed in
order to simulate an MRI sequence: the array of time inter-
vals is created from the sequence description. For each
interval and point of the virtual sample, Eqs. (3) and (9)
are used to calculate the magnetization vector M and its
intra-voxel gradients okM, respectively. During periods of
signal acquisition, Eq. (18) is used to calculate the complex
signal, which is transformed to an image by means of stan-
dard reconstruction algorithms of ODIN. To derive the
algorithm in its closed form presented here, the following
assumptions were made:

• To allow an iterative solution of Bloch–Torrey Equa-
tions, the hard-pulse approximation was used together
with the approximation that relaxations constants are
short compared to simulation intervals during RF irra-
diation. Furthermore, the effect of molecular self diffu-
sion was modelled by continuous damping of the
magnetization at each iteration.

• To calculate the tilt angle a of the magnetization vector
M within the voxel (Eq. (12)), which will become impor-
tant in Appendix A to calculate AD, it was assumed that
the magnitude of M does not vary throughout the voxel.

• The MR signal (Eq. (17)) is calculated under the approx-
imation that the transverse magnitude is constant within
the voxel.
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3. Applications

In this section, a number of applications of the algo-
rithm described above are presented together with their
results in order to highlight its feasibility for different use
cases: the spatial response of single voxels is studied.
MAGSI is applied to intra-voxel dephasing around a coax-
ial cylinder, and echo-planar imaging (EPI) is simulated.
The signal of an isochromat distribution is calculated,
and finally, the effect of self diffusion is simulated using
MAGSI. All simulations were performed on a 3.2 GHz
Linux PC. STs were obtained by a timer which was started
and stopped right before and after calling the simulation
routine in order to avoid bias from program initialization.
If appropriate, STs were compared with those of ISUM,
whereby ISUM images were simulated by skipping the cal-
culation of magnetization gradients and consequently
sinck = 1 in Eq. (18).

3.1. Spatial response of MAGSI

Before studying more complex applications of the simu-
lation, the spatial response of single voxels using MAGSI is
investigated. Fig. 2 shows a 256 · 256 simulated image of a
5 · 5 input matrix with M0 distributed by a checkerboard
pattern using a spoiled gradient-echo (SGE) sequence.
Each input voxel extends over several imaging voxels.
Because of the very limited number of input voxels, the
completion of the simulation took only 8 s.

3.2. Coaxial cylinder model

The well-studied coaxial cylinder model [15] was used to
test the feasibility of simulating the effect of field perturba-
tions. The model consists of two coaxial cylinders perpen-
dicular to the main field direction. In our simulations, the
outer and inner cylinder had radii of 65 and 4.5 mm and
susceptibilities of 9 and 116 ppm, respectively. No signal
was obtained from the inner cylinder. The relaxation con-
stants of the outer cylinder were T1 = 360 ms and
T2 = 320 ms. An SGE sequence with 128 · 128 matrix size,
Fig. 2. SGE image (256 · 256 matrix size, 150 mm FOV) of a 5 · 5 voxel
input matrix with a checkerboard pattern simulated by means of MAGSI.
150 mm FOV, TE = 30 ms, TR = 5 s and 11.1 kHz receiver
bandwidth was used. The simulation was performed for a
field strength of 1.5 T (equivalent to the setup described
in [15]).

In [15], formulae are given to calculate an image of the
cylinder model, which was shown to correlate well with
actual measurements. Therefore, an image with a large
input matrix of 4096 · 4096 voxels was created using these
equations to serve as a reference to estimate the accuracy of
simulation results.

Simulated images are shown in Fig. 3. The associated
error in the central region with respect to the reference
image is depicted in Fig. 4. Using MAGSI, spurious signal
in the center is strongly reduced because intra-voxel
dephasing is directly accounted for by Eq. (18) with large
magnetization gradients (i.e., large ok/) produced by high
okx in central region. The accuracy at all sizes of the input
matrix when using MAGSI is comparable to that of the
largest size (1024 · 1024, not shown) of ISUM. Please note,
however, that the latter requires an almost impractical ST

of 14.5 h. Moreover, from Fig. 4 it can be seen that ST can
be reduced by at least an order of magnitude using MAG-
SI. In addition, a different slope of the curves in Fig. 4 is
observed: the accuracy using ISUM depends strongly on
the input-matrix size, whereas with MAGSI, the accuracy
is more tolerant with respect to the input size.

3.3. EPI simulation

In order to compare the simulation with actual measure-
ments, the brain of a healthy subject was measured on a 3 T
Magnetom Trio (Siemens, Erlangen, Germany) with a
birdcage head resonator using spin-echo EPI with 64 · 64
matrix size, 200 mm FOV, 3 mm slice thickness,
TE = 57 ms and 100 kHz receiver bandwidth. The vol-
ume-selective shim was disabled on purpose in order to
increase image distortions due to field inhomogeneities.
For anatomical reference, images created by a power-re-
duced variant of the modified driven-equilibrium Fourier
transform (MDEFT) sequence [16] were also acquired.
The virtual sample was derived from measurements of
the same slice during the same session utilizing a Look-
Locker sequence for T1 (r), a Carr–Purcell–Meiboom–Gill
sequence for T2 (r) and an SGE sequence with variable
TE for x (r) and M0 (r). All sequences were programmed
using ODIN.

Results of these measurements and simulations are
shown in Fig. 5. Image contrast and distortion of the
EPI simulations coincide well with those of the actual mea-
surement. Using an 128 · 128 input matrix, both simula-
tion strategies provide good and almost identical image
quality. However, using an input size of 64 · 64, which is
the same as the image size, spurious fluctuations appear
when using ISUM. In contrast, the use of MAGSI results
in a smooth image, which is equivalent to that of a larger
input size. The images simulated with an 32 · 32 input
matrix demonstrate what happens if input voxels are larger



Reference
ISUM MAGSI

512×512 9392 s 12990 s

256×256 2428 s 3348 s

128×128 584 s 823 s

Fig. 3. Simulated images of coaxial cylinder model for different sizes of the input matrix. The top row displays the reference image calculated by formulae
given in [15]. Each of the remaining rows was simulated with an input matrix size indicated on the left. The left column displays images obtained by ISUM,
and results using MAGSI are shown in the right column. The time required for the simulation is indicated to the right of each image. Red curves show
magnitude profiles along the green lines.
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than imaging voxels: with ISUM single isochromats
become visible, and MAGSI provides images which are
smoothed heavily.

By comparing the STs of images with smallest input size
but without visible artifacts (128 · 128 for ISUM and
64 · 64 for MAGSI), it can be roughly estimated that
MAGSI provides a four-fold increase in simulation speed
without sacrificing accuracy. Thereby, it is important to
note that STs do not scale linearly with the number of
input voxels, as expected (for instance: 4 · 14.2 s „ 99.9 s,
see Fig. 5, ISUM with 64 · 64 and 128 · 128). The abbera-
tion is probably caused by memory caching within the
computers processor, causing overhead for applications
which exceed its limit. This interpretation is supported by
the fact that for smaller input sizes, i.e., if the cache size
is sufficient to accommodate the whole magnetization dur-
ing simulation, ST is approximately linear in the number of
input voxels. However, as the simulation presented here is
a realistic application, it is admissible to take this overhead
into account when comparing STs.
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3.4. Frequency distribution

In the previous examples, MAGSI has been used to
interpolate the magnetization between spatial positions
(k = x,y,z). It may also be used to interpolate between fre-
quency offsets (k = x) in order to reduce the number of iso-
chromats. To test this, the free-induction decay (FID) of a
Gaussian-shaped frequency distribution with full-width-at-
half-maximum (FWHM) of 4.77 Hz, T2 = 200 ms and an
isochromat separation of 2.5 Hz (8 isochromats) after a
p/2 pulse at t = 0 (comparable to Fig. 3b in [9]) is shown
in Fig. 6. It is clear that the use of MAGSI provides an
FID in which spurious refocusing, which leads to artificial
signal maxima, is reduced significantly. However, if the
accuracy is analyzed as a function of ST (Fig. 7), the per-
formance of MAGSI is slightly worse than that of ISUM.

3.5. Diffusion weighting with a stimulated echo

The PDs of M can also be used to simulate the effect of
self-diffusion by calculating Eqs. (3) and (5) by means of
formulae for b1 and b2 given in Appendix A. The simula-
tion of a diffusion-weighted spin-echo sequence, which is
commonly applied for this purpose, is trivial because only
transverse magnetization plays a role, i.e., only b2 has to
be known, which is given by the Stejskal–Tanner formula.
Therefore, as a more sophisticated example, a stimulated-
echo sequence (3 hard-p/2 pulses) was simulated with
TE = 28 ms, a mixing time of 50 ms and two gradient
pulses enclosing the sequence of identical RF pulses.
The gradient amplitude was adjusted to yield b-values in
the range 100–2000 s/mm2. An off-resonance frequency
distribution with FWHM of 100 Hz and a uniform diffu-
sion coefficient of 10�3 mm2/s was used as input for sim-
ulation. The simulated spectra are depicted side-by-side in
Fig. 8. There is good agreement between the specified dif-
fusion coefficient and the result of the fit: the error is less
than 1%.
4. Discussion

The algorithm presented here allows a straightforward
implementation. It is now an integral part of ODIN which
means that its source code is freely available and a large
number of sequences, which were validated by actual mea-
surements, can be simulated.

The application to the coaxial cylinder model shows that
by using ISUM to simulate the effect of field perturbations,
at least 8 isochromats per direction are necessary to reduce
the error in the reconstructed image to a few percent (cf.
Fig. 4). This exceeds previous estimations of three isochro-
mats per direction [7]. This discrepancy is caused by the dif-
ficulty to simulate signal attenuation due to field-
inhomogeneity-induced intra-voxel dephasing accurately
with a limited number of isochromats because spurious
rephasing can occur. However, by using MAGSI (linear)
intra-voxel dephasing is modeled correctly and the error,
and hence the ST, can be reduced enormously.

The simulation results of Fig. 3 show more abberations
between ISUM and MAGSI than those in Fig. 5. This is
due to the fact that the image patterns of Fig. 3 are domi-
nated by intra-voxel dephasing which is handled more effi-
ciently by MAGSI than by ISUM. On the other hand, the
contrast in Fig. 5 is dominated by differences in T2 which is
simulated equally in ISUM and MAGSI.

Calculating the magnetization gradients in addition to
the magnetization vector in the MAGSI technique
increased ST by approximately 30–100% in the imaging
simulations depending on the sequence used. One would
expect a larger overhead because the number of computa-
tional steps required to calculate Eq. (9) is considerably
higher than that required for Eq. (3), and in addition,
Eq. (18) has to be calculated. However, the computational-
ly expensive trigonometric and exponential functions of E,
RRF, okRz, and Rz in Eq. (9) have already been calculated
for the magnetization vector and can be reused during one
iteration. Another great advantage is that Eq. (18) has to
be evaluated only during signal acquisition, i.e., only dur-
ing a fraction of the whole sequence simulation. This over-
head is negligible because the size of the input matrix can
be reduced significantly by using MAGSI in comparison
to ISUM (especially if field perturbations are involved).
In addition, it becomes more robust and fault-tolerant as
the dependency on the size of the input matrix is greatly
reduced.

By using an input-matrix size which is smaller than the
desired image size, the spatial response to a particular input
voxel extends over several imaging voxels. An extreme
example is Fig. 2. In cases where simple objects like this
checkerboard are sufficient to test the quality of MRI
sequences, ST is negligible. Thus, the simulation can
become an integral part of sequence development process
without the need of time-consuming measurements.

In addition to spatial interpolation, MAGSI can also
be used to increase the accuracy of simulating the signal
from frequency distributions by interpolating between



Measured
ISUM MAGSI

128×128 99.9 s 210.6 s

64×64 14.2 s 23.0 s

32×32 3.9 s 5.8 s

Fig. 5. Images of human brain. The top row depicts the EPI (left) and MDEFT (right) measurement. The rest of the layout is equivalent to that of Fig. 3.
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isochromats, as demonstrated by the simulation of FID.
However, in the example presented, it did not increase
the efficiency in terms of ST. This is because the sequence
used is dominated by periods of signal acquisition which
are costly for MAGSI: Eq. (18) has to be calculated at
each iteration. On the other hand, MAGSI does not wors-
en the simulation efficiency. It can be expected that it will
become more useful for complicated sequences with many
RF pulses and gradients.

It should be noted that in [2,10], intra-voxel dephasing is
accounted for by shortening the transverse magnetization
according to the current field gradients in the voxel during
each sample time. This accumulative damping of the signal
models continuous dephasing correctly, but cannot
account for rephasing (e.g., a gradient echo cannot be gen-
erated from a single voxel) as it does only keep track of the
magnitude of the magnetization vector. Thus, intra-voxel
rephasing can only be achieved by the accumulative effect
of many isochromats. In contrast, the approach presented
here treats rephasing and dephasing equally by keeping
track of the magnetization gradients.

In addition to modeling intra-voxel dephasing, the PDs
of magnetization can also be used to calculate the signal
attenuation due to molecular self-diffusion. The formulae
presented in Appendix A provide a general framework to
calculate the attenuation iteratively. Thus, it can be
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applied to any MR sequence. The simulation of the diffu-
sion-weighted stimulated-echo sequence yielded excellent
agreement between simulation and theoretical prediction
of the Stejskal–Tanner formula. However, it remains to
be proven that this corresponds with measurements, and
that the framework is also applicable to more complex
sequences, e.g. those based on steady-state free
precession.

In order to increase the accuracy of simulation, it would
be possible to trace not only the magnetization gradients,
i.e. the first order PDs, but also higher order PDs. These
could be obtained by calculating again PDs of Eq. (9).
However, it is questionable whether this would also
increase efficiency of the simulation by reducing ST

because the primary effect of external and internal gradi-
ents is to establish a linear dependency which is properly
covered by first-order PDs.

There is a close relation between spatial PDs of the
transverse phase (ok/ with k = x,y,z) and k-space coordi-
nates. For example, both are identical when studying
dephasing due to the application of gradients after a single
excitation without field perturbations (Eq. (11) with
okx = 0). However, the difference is that k-space analysis
requires a priori knowledge about the intention of RF puls-
es, e.g., whether they are used for excitation or refocusing,
in order to trace the k-space trajectory of a certain coher-
ence pathway. In contrast, this is automatically taken into
account by MAGSI. For instance, a p-refocusing pulse will
reflect magnetization gradients in the transverse plane (Eq.
(9) with RRF = diag(1,�1,�1)) which is equivalent to
reflecting k-space coordinates.

5. Conclusions

The MAGSI algorithm has been introduced which
increases efficiency when simulating Bloch–Torrey equa-
tions. That is, it increases simulation accuracy without
elongating simulation time, or alternatively, decreases sim-
ulation time while retaining accuracy. It has been shown
that MAGSI is most applicable to (linear) intra-voxel
dephasing due to field perturbations. In the specific case
of the cylinder model, simulation time was reduced by at
least an order of magnitude compared to conventional
summation techniques. Although to a lesser extent, MAG-
SI is also useful to increase simulation efficiency of typical
imaging sequences by reducing artifacts due to the discrete
nature of the input matrix. Another result of the algorithm
is that the effect of molecular self-diffusion on the MR sig-
nal can be calculated iteratively.
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Appendix A

In order to calculate b1 and b2 using Eq. (1), we first
need to derive a relation for $2M i, i.e., for $2 acting on
M at a fixed point in time at the end of an simulation inter-
val with index i. Because it is assumed that Mi is limited to
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a sphere of radius |Mi| within the voxel and that higher-or-
der PDs can be neglected, Mi (r) will be some linear combi-
nation of trigonometric functions with an argument a given
by Eq. (12). Partial derivation then yields

$2M i ¼ �ð$aÞ2M i ¼ �dM i ð20Þ
with

d ¼

P3
l¼1

ðorl M iÞ2

M2
i

. ð21Þ

The evolution of the complex transverse magnetization
M^ = Mx + iMy during periods of free precession with
constant (internal and/or external) gradient $Xz and free
isotropic diffusion with coefficient D (and neglecting relax-
ation) is described by the first two rows of Eq. (1)

_M? ¼ �iM?r$Xz þ D$2M?. ð22Þ
We will use the approach

M?ðr; tÞ ¼ exp½�b2ðtÞD� itr$Xz�Mi
?ðrÞ ð23Þ

in order to calculate b2 (t) with b2 (0) = 0. Please note that
this differs from the approach used in [12] by Mi

?ðrÞ, which
is an additional initial dependency of M^ upon r at t = 0,
i.e., at the end of the previous ith iteration. This generaliza-
tion is necessary for proper step-wise simulation of diffusion.

Substituting Eq. (23) in Eq. (22) and using Eq. (20), one
obtains

_b2 ¼ ðt$XzÞ2 � 2tð$XzÞð$/iÞ þ d þ 2it
$jMi

?j
jMi
?j

$Xz ð24Þ

with $/i given by Eq. (16). As with calculation of MR sig-
nal, it is assumed that $jMi

?j ¼ 0 so that the last term can
be neglected. Integration of Eq. (24) then yields

b2 ¼ Dt
1

3
h2 � h$/i þ d

� �
ð25Þ

with h ¼ Dt$Xz of Eq. (11). It can be verified that this iter-
ative equation produces the correct Stejskal–Tanner for-
mula [17].

The above strategy incorporates the effect of diffusion
on the transverse magnetization only. For a comprehensive
simulation, it is also necessary to calculate the attenuation
of longitudinal magnetization due to diffusion. For
instance, to simulate diffusion weighting with a stimulated
echo, where magnetization is stored in longitudinal direc-
tion between two RF pulses, the effect of diffusion during
this period must also be considered. Hence, we take the
third component of Eq. (1) and neglect T1 relaxation:

_Mz ¼ D$2Mz. ð26Þ
In analogy to Eq. (23), the approach

Mzðr; tÞ ¼ exp½�b1ðtÞD�Mi
zðrÞ ð27Þ

is used to solve for b1. The initial condition Mi
z is given by

Mz at the end of the previous iteration. Substituting Eq.
(27) into Eq. (26), using Eq. (20) and integrating b1, one
obtains

b1 ¼ dDt. ð28Þ
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